Olha o que uma maça fez com Newton !!

Olha o que uma maça fez com Newton !!

sábado, junho 05, 2010



ERA QUÂNTICA






A grande revolução que leva a Física à modernidade e a teoria quântica, que começa a se definir no fim do século XIX . É a inauguração de uma nova "lógica" resultante das várias pesquisas sobre a estrutura do átomo, radiatividade e ondulatória.
Max Planck é quem define o conceito fundamental da nova teoria - o quanta. Mas a teoria geral é de autoria de um grupo internacional de físicos, entre os quais: Niels Bohr (Dinamarca), Louis De Broglie (França), Erwin, Shrödinger e Wolfgang , Pauli (Áustria), Werner Heisenberg (Alemanha), e Paul Dirac (Inglaterra).

Quanta - Em 1900 o físico alemão Max Planck afirma que as trocas de energia não acontecem de forma continua e sim em doses, ou pacotes de energia, que ele chama de quanta. A introdução do conceito de descontinuidade subverte o princípio do filósofo alemão Wilhelm Leibniz (1646-1716), "natura non facit saltus"( a natureza não dá saltos), que dominava todos os ramos da ciência na época.

Max Planck - (1858-1947) nasce em Kiel, Alemanha. Filho de juristas, chega a oscilar entre a carreira musical e os estudos científicos. Decide-se pela Física e se dedica à carreira acadêmica até o fim da vida. Em 14 de dezembro de 1900, durante uma reunião da Sociedade Alemã de Física, apresenta a noção de "quanta elementar de ação". Em sua autobiografia Planck diz que na época não previa os efeitos revolucionários dos quanta. Em 1918 recebe o prêmio Nobel de Física.

Modelo quântico do átomo - Surge em 1913, elaborado por Niels Bohr (1885-1962). Segundo ele, os elétrons estão distribuídos em níveis de energia característicos de cada átomo. Ao absorver um quanta de energia, um elétron pode pular para outro nível e depois voltar a seu nível original, emitindo um quanta idêntico.

Dualidade Quântica
A grande marca da mecânica quântica é a introdução do conceito de dualidade e depois, com Werner Heisenberg, do princípio de incerteza. Para a mecânica quântica, o universo é essencialmente não-deterministico. O que a teoria oferece é um conjunto de prováveis respostas. No lugar do modelo planetário de átomo, com elétrons orbitando em volta de um núcleo, a quântica propõe um gráfico que indica zonas onde eles têm maior ou menor probabilidade de existir. Toda matéria passa a ser entendida segundo uma ótica dual: pode se comportar como onda ou como partícula. É o rompimento definitivo com a mecânica clássica, que previa um universo determinístico.

Princípio da incerteza - Em 1927 Werner Heisenberg formula um método para interpretar a dualidade da quântica, o princípio da incerteza. Segundo ele, pares de variáveis interdependentes como tempo e energia, velocidade e posição, não podem ser medidos com precisão absoluta. Quanto mais precisa for a medida de uma variável, mais imprecisa será a segunda. "Deus não joga dados", dizia Albert Einstein, negando os princípios na nova mecânica.

RELATIVIDADE
A teoria da relatividade surge em duas etapas e altera profundamente as noções de espaço e tempo. Enquanto a mecânica quântica é resultado do trabalho de vários físicos e matemáticos, a relatividade é fruto exclusivo das pesquisas de Albert Einstein.

Relatividade Restrita - Em 1905 ele formula a Teoria da Relatividade Restrita (ou especial), segundo a qual a distância e o tempo podem ter diferentes medidas segundo diferentes observadores. Não existe portanto tempo e espaço absolutos como afirmara Newton no Principia, mas grandezas relativas ao sistema de referência segundo o qual elas são descritas.

Raios simultâneos - Einstein dá o exemplo dos raios e o trem. Dois indivíduos observam dois raios que atingem simultaneamente as extremidades de um trem (que anda em velocidade constante em linha reta) e chamuscam o chão. Um homem está dentro do trem, exatamente na metade dele. O segundo indivíduo está fora, bem no meio do trecho entre as marcas do raio. Para o observador que está no chão, os raios caem simultaneamente. Mas o homem no trem dirá que os raios caíram em momentos sucessivos, porque ele, ao mesmo tempo que se desloca em direção ao relâmpago da frente, se afasta do relâmpago que cai na parte traseira. Este último relâmpago deve percorrer uma distância maior do que o primeiro para chegar até o observador. Como a velocidade da luz é constante, o relâmpago da frente "chega" antes que o de trás.

Relatividade Geral
Dez anos depois, Einstein estende a noção de tempo-espaço à força da gravidade. A Teoria Geral da Relatividade (1916), classificada pelo próprio Einstein como "bonita esteticamente", é também uma teoria da gravidade capaz de explicar a força de atração pela geometria tempo-espaço .

A fórmula relativa - A "revolução" de Einstein Torna popular a fórmula Física E= mc2 (energia é igual a massa vezes o quadrado da velocidade da luz). A equivalência entre massa e energia (uma pequena quantidade de massa pode ser transformada em uma grande quantidade de energia) permite explicar a combustão das estrelas e dar ao homem maior conhecimento sobre a matéria. É a expressão teórica das enormes reservas de energia armazenadas no átomo na qual se baseiam os artefatos nucleares.

Bomba atômica - Artefato nuclear explosivo que atinge seu efeito destrutivo através da energia liberada na quebra de átomos pesados (urânio 235 ou plutônio 239). Armas atômicas foram superadas pelas bombas termonucleares, que têm maior poder destrutivo. As bombas termonucleares (bomba H e bomba de nêutrons) agem por meio de ondas de pressão ou ondas térmicas. Produzem essencialmente radiação, mortal para os seres vivos, sem destruir bens materiais. São bombas de fusão detonadas por uma bomba atômica e podem ter o tamanho de um paralelepídedo.

Velocidade relativa - A relatividade também revoluciona a noção de velocidade. Ao demostrar que todas as velocidades são relativas, explica que, apesar do movimento, nenhuma partícula poderia se deslocar a uma velocidade superior à da luz ( 299.792.458 metros por segundo). À medida que se aproximasse dessa velocidade, a energia e a massa da partícula também aumentariam, tomando cada vez mais difícil a aceleração.

Geometria espaço-tempo - Enquanto Newton descrevera a gravitação como uma queda, para Einstein é uma questão espacial. Quando um corpo está livre, isto é, sem influência de qualquer força, seus movimentos apenas exprimem a qualidade de espaço-tempo. A presença de um corpo em determinado local causa uma distorção no espaço próximo.

Espaço curvo - Um raio de luz proveniente de uma estrela distante parece sofrer uma alteração de trajetória ao passar perto do Sol. Isto não é causado por qualquer força de atração, diz Einstein. Em função da enorme massa do Sol, o espaço a sua volta está deformado. É como se ele estivesse " afundado". O raio apenas acompanha esta curvatura, mas segue sua rota natural. E se a matéria encurva o espaço, é possível admitir que todo o Universo é curvo. A confirmação experimental do espaço curvo só acontece em 1987, com a observação de galáxias muito distantes.

Albert Einstein ( 1879-1955) nasce um Ulm, Alemanha, em 1879. Chega a ser considerado deficiente mental porque até 4 anos não fala fluentemente. Durante o secundário, é considerado pelos professores um estudante medíocre. Mas, fora da escola, Einstein mostra desde jovem interesse pela matemática. Começa seus estudos de matemática e Física na Alemanha e depois assume nacionalidade suíça. Em 1921 recebe o prêmio Nobel. No apogeu do nazismo vai para os EUA e se naturaliza norte-americano. Depois da 2a guerra, passa a defender o controle internacional de armas nucleares. Morre em Princeton, EUA.

PARTÍCULAS SUBATÔMICAS

A história das partículas que compõem o átomo é bastante recente. Só em 1932 confirma-se que os átomos são formados por nêutrons, prótons e elétrons. Em seguida são encontradas partículas ainda menores como o pósitron, o neutrino e o méson - uma partícula internuclear de vida curtíssima (um décimo milésimo milionésimo de segundo).

Quarks e léptons - Hoje já se conhecem 12 tipos de partículas elementares. Elas são classificadas em duas famílias: quarks e léptons. Estes são os tijolos da matéria. Há seis gerações de partículas quark e seis de léptons. A primeira geração de quarks é a dos upe down (alto e baixo), que formam, por exemplo, os nêutrons e os prótons.

Os quarks de segunda e terceira geração, os charm e strange (charme e estranho) e os bottom e top (base e topo), existiram em abundância no início do Universo. Hoje, são partículas muito raras e só recentemente foram identificadas. O quark top foi detectado pela primeira vez em abril do ano passado. Os mésons também são formados por quarks . A família dos leptons reúne gerações de partículas mais leves. Entre eles, os mais conhecidos são o elétron e o neutrino.

O tamanho do átomo - O diâmetro de um átomo é de aproximadamente 10-10 m, ou um centésimo milionésimo de centímetro. Se uma laranja fosse ampliada até ter o tamanho da Terra, seus átomos teriam o tamanho de cerejas. Uma proporção semelhante é a que existe entre o átomo e o núcleo dele. Se um átomo pudesse ser ampliado e ter o tamanho de uma sala de aula, ainda assim o núcleo não seria visível a olho nu.

Estudo do núcleo - Apesar de todo avanço tecnológico, nunca foi possível ver o interior do átomo. Para descobrir características e propriedades das partículas, os físicos usam métodos indiretos de observação. Bombardeiam núcleos atômicos e depois verificam os "estragos". Registram as ocorrências e fazem curvas de comportamento. Depois fazem abstrações matemáticas (modelos) que serão testados para confirmação.

Aceleradores de partículas - Os aceleradores são os aparelhos desenvolvidos para "olhar " o núcleo atômico. São eles que fornecem altas doses de energia para que partículas possam romper o campo de força que envolve o núcleo e atingi-lo. Essas partículas podem ser elétrons, prótons, antiprótons. Em grandes anéis circulares ou túneis, as partículas são aceleradas em direção oposta e produzem milhares de colisões por segundo. Um detector registra o rastro das partículas que resultam de cada choque e um computador seleciona as colisões a serem analisadas.

TENDÊNCIAS ATUAIS

A fusão nuclear controlada e a Física dos primeiros instantes do Universo são atualmente os campos mais desafiantes da fisica.

Fusão Nuclear Controlada - A fusão nuclear é um processo de produção de energia a partir do núcleo do átomo. Este fenômeno ocorre naturalmente no interior do Sol e da estrelas. Núcleos leves como o do hidrogênio e seus isótopos - o deutério e o trítio -se fundem e criam elementos de um núcleo mais pesado, como o hélio. Neste processo, há uma enorme liberação de energia. Até hoje, só foi possível produzir energia nuclear pela fissão (quebra) do núcleo dos átomos. Esta "quebra"resulta em energia, mas libera resíduos radiativos e por isso não pode ser considerada uma fonte segura.

Combustível nuclear - Um dos desafios da Física atual é reproduzir o processo de fusão de maneira controlada e obter combustível nuclear. Será uma alternativa mais econômica e limpa. Pode ser obtida a partir de matéria-prima abundante (água) e sem efeitos poluidores (como o monóxido de carbono, resultante da queima de combustíveis, ou a radiação).

Deutério - O combustível para a fusão, o deutério, é um isótopo de hidrogênio abundante na água. Na fusão nuclear, uma única gota de deutério (obtida a partir de 4 litros de água comum) produziria energia equivalente à queima de 1.200 litros de petróleo.

Teoria do Campo Unificado - Neste campo, as teorias sobre a evolução do Universo a partir do seu momento inicial, o Big Bang (Grande Explosão), se encontra com as teorias das partículas elementares. A hipótese aceita hoje em dia é que, logo após o Big Bag, teria se formado uma espécie de "sopa" superquente de partículas básicas das quais se constitui toda a matéria e que, ao se resfriarem, teriam dado origem à matéria em seu estado atual. O grande desafio é estabelecer uma teoria do campo unificado que descreva a ação das forças fundamentais (gravitacionais, eletromagnéticas e nucleares) num único conjunto de equações ou a partir de um princípio geral, que seria a "força" presente no início dos tempos.


ESPECIALIZAÇÕES DA Física

Cosmologia e astroFísica - Tratam da natureza do universo físico, sua origem, evolução e possíveis extensões espaço-temporais.
Física atômica, molecular e de polímeros - Dedicam-se à descrição da estrutura e das propriedades de sistemas de muitos elétrons, como os átomos complexos, ou como moléculas e compostos orgânicos.
Física da matéria condensada e do estado sólido - Ocupa-se das propriedades gerais dos materiais, como cristais, vidros ou cerâmicas. Tem como subespecializações a Física de semicondutores e a Física de superfícies.
Física nuclear - Estuda a estrutura nuclear e os mecanismos de reação, emissão de radiatividade natural, de fissão e fusão nuclear.
Física dos plasmas - Estuda a matéria a centenas de milhares de graus ou mesmo a milhões de graus de temperatura, estado em que a estrutura atômica regular é desfeita em íons e elétrons ou em que ocorrem fusões nucleares, como no Sol e nas demais estrelas.
Física das partículas elementares - Trata dos constituintes fundamentais da matéria.
Física das radiações - Estuda os efeitos produzidos pela absorção da energia da radiação eletromagnética em geral ou da radiação ionizante em particular.
Gravitação e relatividade geral - Tratam das propriedades geométricas do espaço/tempo, como decorrentes das concentrações de massa no Universo.
Mecânica dos fluídos - Estuda as propriedades gerais e as leis de movimento dos gases e dos líquidos.
Óptica - Estuda propriedades e efeitos de fontes de luz (como os raios laser), de transmissores de luz (como as fibras ópticas) e de fenômenos e instrumentos ópticos (como o arco-íris e os microscópios).