Olha o que uma maça fez com Newton !!

Olha o que uma maça fez com Newton !!

sábado, junho 05, 2010



ERA QUÂNTICA






A grande revolução que leva a Física à modernidade e a teoria quântica, que começa a se definir no fim do século XIX . É a inauguração de uma nova "lógica" resultante das várias pesquisas sobre a estrutura do átomo, radiatividade e ondulatória.
Max Planck é quem define o conceito fundamental da nova teoria - o quanta. Mas a teoria geral é de autoria de um grupo internacional de físicos, entre os quais: Niels Bohr (Dinamarca), Louis De Broglie (França), Erwin, Shrödinger e Wolfgang , Pauli (Áustria), Werner Heisenberg (Alemanha), e Paul Dirac (Inglaterra).

Quanta - Em 1900 o físico alemão Max Planck afirma que as trocas de energia não acontecem de forma continua e sim em doses, ou pacotes de energia, que ele chama de quanta. A introdução do conceito de descontinuidade subverte o princípio do filósofo alemão Wilhelm Leibniz (1646-1716), "natura non facit saltus"( a natureza não dá saltos), que dominava todos os ramos da ciência na época.

Max Planck - (1858-1947) nasce em Kiel, Alemanha. Filho de juristas, chega a oscilar entre a carreira musical e os estudos científicos. Decide-se pela Física e se dedica à carreira acadêmica até o fim da vida. Em 14 de dezembro de 1900, durante uma reunião da Sociedade Alemã de Física, apresenta a noção de "quanta elementar de ação". Em sua autobiografia Planck diz que na época não previa os efeitos revolucionários dos quanta. Em 1918 recebe o prêmio Nobel de Física.

Modelo quântico do átomo - Surge em 1913, elaborado por Niels Bohr (1885-1962). Segundo ele, os elétrons estão distribuídos em níveis de energia característicos de cada átomo. Ao absorver um quanta de energia, um elétron pode pular para outro nível e depois voltar a seu nível original, emitindo um quanta idêntico.

Dualidade Quântica
A grande marca da mecânica quântica é a introdução do conceito de dualidade e depois, com Werner Heisenberg, do princípio de incerteza. Para a mecânica quântica, o universo é essencialmente não-deterministico. O que a teoria oferece é um conjunto de prováveis respostas. No lugar do modelo planetário de átomo, com elétrons orbitando em volta de um núcleo, a quântica propõe um gráfico que indica zonas onde eles têm maior ou menor probabilidade de existir. Toda matéria passa a ser entendida segundo uma ótica dual: pode se comportar como onda ou como partícula. É o rompimento definitivo com a mecânica clássica, que previa um universo determinístico.

Princípio da incerteza - Em 1927 Werner Heisenberg formula um método para interpretar a dualidade da quântica, o princípio da incerteza. Segundo ele, pares de variáveis interdependentes como tempo e energia, velocidade e posição, não podem ser medidos com precisão absoluta. Quanto mais precisa for a medida de uma variável, mais imprecisa será a segunda. "Deus não joga dados", dizia Albert Einstein, negando os princípios na nova mecânica.

RELATIVIDADE
A teoria da relatividade surge em duas etapas e altera profundamente as noções de espaço e tempo. Enquanto a mecânica quântica é resultado do trabalho de vários físicos e matemáticos, a relatividade é fruto exclusivo das pesquisas de Albert Einstein.

Relatividade Restrita - Em 1905 ele formula a Teoria da Relatividade Restrita (ou especial), segundo a qual a distância e o tempo podem ter diferentes medidas segundo diferentes observadores. Não existe portanto tempo e espaço absolutos como afirmara Newton no Principia, mas grandezas relativas ao sistema de referência segundo o qual elas são descritas.

Raios simultâneos - Einstein dá o exemplo dos raios e o trem. Dois indivíduos observam dois raios que atingem simultaneamente as extremidades de um trem (que anda em velocidade constante em linha reta) e chamuscam o chão. Um homem está dentro do trem, exatamente na metade dele. O segundo indivíduo está fora, bem no meio do trecho entre as marcas do raio. Para o observador que está no chão, os raios caem simultaneamente. Mas o homem no trem dirá que os raios caíram em momentos sucessivos, porque ele, ao mesmo tempo que se desloca em direção ao relâmpago da frente, se afasta do relâmpago que cai na parte traseira. Este último relâmpago deve percorrer uma distância maior do que o primeiro para chegar até o observador. Como a velocidade da luz é constante, o relâmpago da frente "chega" antes que o de trás.

Relatividade Geral
Dez anos depois, Einstein estende a noção de tempo-espaço à força da gravidade. A Teoria Geral da Relatividade (1916), classificada pelo próprio Einstein como "bonita esteticamente", é também uma teoria da gravidade capaz de explicar a força de atração pela geometria tempo-espaço .

A fórmula relativa - A "revolução" de Einstein Torna popular a fórmula Física E= mc2 (energia é igual a massa vezes o quadrado da velocidade da luz). A equivalência entre massa e energia (uma pequena quantidade de massa pode ser transformada em uma grande quantidade de energia) permite explicar a combustão das estrelas e dar ao homem maior conhecimento sobre a matéria. É a expressão teórica das enormes reservas de energia armazenadas no átomo na qual se baseiam os artefatos nucleares.

Bomba atômica - Artefato nuclear explosivo que atinge seu efeito destrutivo através da energia liberada na quebra de átomos pesados (urânio 235 ou plutônio 239). Armas atômicas foram superadas pelas bombas termonucleares, que têm maior poder destrutivo. As bombas termonucleares (bomba H e bomba de nêutrons) agem por meio de ondas de pressão ou ondas térmicas. Produzem essencialmente radiação, mortal para os seres vivos, sem destruir bens materiais. São bombas de fusão detonadas por uma bomba atômica e podem ter o tamanho de um paralelepídedo.

Velocidade relativa - A relatividade também revoluciona a noção de velocidade. Ao demostrar que todas as velocidades são relativas, explica que, apesar do movimento, nenhuma partícula poderia se deslocar a uma velocidade superior à da luz ( 299.792.458 metros por segundo). À medida que se aproximasse dessa velocidade, a energia e a massa da partícula também aumentariam, tomando cada vez mais difícil a aceleração.

Geometria espaço-tempo - Enquanto Newton descrevera a gravitação como uma queda, para Einstein é uma questão espacial. Quando um corpo está livre, isto é, sem influência de qualquer força, seus movimentos apenas exprimem a qualidade de espaço-tempo. A presença de um corpo em determinado local causa uma distorção no espaço próximo.

Espaço curvo - Um raio de luz proveniente de uma estrela distante parece sofrer uma alteração de trajetória ao passar perto do Sol. Isto não é causado por qualquer força de atração, diz Einstein. Em função da enorme massa do Sol, o espaço a sua volta está deformado. É como se ele estivesse " afundado". O raio apenas acompanha esta curvatura, mas segue sua rota natural. E se a matéria encurva o espaço, é possível admitir que todo o Universo é curvo. A confirmação experimental do espaço curvo só acontece em 1987, com a observação de galáxias muito distantes.

Albert Einstein ( 1879-1955) nasce um Ulm, Alemanha, em 1879. Chega a ser considerado deficiente mental porque até 4 anos não fala fluentemente. Durante o secundário, é considerado pelos professores um estudante medíocre. Mas, fora da escola, Einstein mostra desde jovem interesse pela matemática. Começa seus estudos de matemática e Física na Alemanha e depois assume nacionalidade suíça. Em 1921 recebe o prêmio Nobel. No apogeu do nazismo vai para os EUA e se naturaliza norte-americano. Depois da 2a guerra, passa a defender o controle internacional de armas nucleares. Morre em Princeton, EUA.

PARTÍCULAS SUBATÔMICAS

A história das partículas que compõem o átomo é bastante recente. Só em 1932 confirma-se que os átomos são formados por nêutrons, prótons e elétrons. Em seguida são encontradas partículas ainda menores como o pósitron, o neutrino e o méson - uma partícula internuclear de vida curtíssima (um décimo milésimo milionésimo de segundo).

Quarks e léptons - Hoje já se conhecem 12 tipos de partículas elementares. Elas são classificadas em duas famílias: quarks e léptons. Estes são os tijolos da matéria. Há seis gerações de partículas quark e seis de léptons. A primeira geração de quarks é a dos upe down (alto e baixo), que formam, por exemplo, os nêutrons e os prótons.

Os quarks de segunda e terceira geração, os charm e strange (charme e estranho) e os bottom e top (base e topo), existiram em abundância no início do Universo. Hoje, são partículas muito raras e só recentemente foram identificadas. O quark top foi detectado pela primeira vez em abril do ano passado. Os mésons também são formados por quarks . A família dos leptons reúne gerações de partículas mais leves. Entre eles, os mais conhecidos são o elétron e o neutrino.

O tamanho do átomo - O diâmetro de um átomo é de aproximadamente 10-10 m, ou um centésimo milionésimo de centímetro. Se uma laranja fosse ampliada até ter o tamanho da Terra, seus átomos teriam o tamanho de cerejas. Uma proporção semelhante é a que existe entre o átomo e o núcleo dele. Se um átomo pudesse ser ampliado e ter o tamanho de uma sala de aula, ainda assim o núcleo não seria visível a olho nu.

Estudo do núcleo - Apesar de todo avanço tecnológico, nunca foi possível ver o interior do átomo. Para descobrir características e propriedades das partículas, os físicos usam métodos indiretos de observação. Bombardeiam núcleos atômicos e depois verificam os "estragos". Registram as ocorrências e fazem curvas de comportamento. Depois fazem abstrações matemáticas (modelos) que serão testados para confirmação.

Aceleradores de partículas - Os aceleradores são os aparelhos desenvolvidos para "olhar " o núcleo atômico. São eles que fornecem altas doses de energia para que partículas possam romper o campo de força que envolve o núcleo e atingi-lo. Essas partículas podem ser elétrons, prótons, antiprótons. Em grandes anéis circulares ou túneis, as partículas são aceleradas em direção oposta e produzem milhares de colisões por segundo. Um detector registra o rastro das partículas que resultam de cada choque e um computador seleciona as colisões a serem analisadas.

TENDÊNCIAS ATUAIS

A fusão nuclear controlada e a Física dos primeiros instantes do Universo são atualmente os campos mais desafiantes da fisica.

Fusão Nuclear Controlada - A fusão nuclear é um processo de produção de energia a partir do núcleo do átomo. Este fenômeno ocorre naturalmente no interior do Sol e da estrelas. Núcleos leves como o do hidrogênio e seus isótopos - o deutério e o trítio -se fundem e criam elementos de um núcleo mais pesado, como o hélio. Neste processo, há uma enorme liberação de energia. Até hoje, só foi possível produzir energia nuclear pela fissão (quebra) do núcleo dos átomos. Esta "quebra"resulta em energia, mas libera resíduos radiativos e por isso não pode ser considerada uma fonte segura.

Combustível nuclear - Um dos desafios da Física atual é reproduzir o processo de fusão de maneira controlada e obter combustível nuclear. Será uma alternativa mais econômica e limpa. Pode ser obtida a partir de matéria-prima abundante (água) e sem efeitos poluidores (como o monóxido de carbono, resultante da queima de combustíveis, ou a radiação).

Deutério - O combustível para a fusão, o deutério, é um isótopo de hidrogênio abundante na água. Na fusão nuclear, uma única gota de deutério (obtida a partir de 4 litros de água comum) produziria energia equivalente à queima de 1.200 litros de petróleo.

Teoria do Campo Unificado - Neste campo, as teorias sobre a evolução do Universo a partir do seu momento inicial, o Big Bang (Grande Explosão), se encontra com as teorias das partículas elementares. A hipótese aceita hoje em dia é que, logo após o Big Bag, teria se formado uma espécie de "sopa" superquente de partículas básicas das quais se constitui toda a matéria e que, ao se resfriarem, teriam dado origem à matéria em seu estado atual. O grande desafio é estabelecer uma teoria do campo unificado que descreva a ação das forças fundamentais (gravitacionais, eletromagnéticas e nucleares) num único conjunto de equações ou a partir de um princípio geral, que seria a "força" presente no início dos tempos.


ESPECIALIZAÇÕES DA Física

Cosmologia e astroFísica - Tratam da natureza do universo físico, sua origem, evolução e possíveis extensões espaço-temporais.
Física atômica, molecular e de polímeros - Dedicam-se à descrição da estrutura e das propriedades de sistemas de muitos elétrons, como os átomos complexos, ou como moléculas e compostos orgânicos.
Física da matéria condensada e do estado sólido - Ocupa-se das propriedades gerais dos materiais, como cristais, vidros ou cerâmicas. Tem como subespecializações a Física de semicondutores e a Física de superfícies.
Física nuclear - Estuda a estrutura nuclear e os mecanismos de reação, emissão de radiatividade natural, de fissão e fusão nuclear.
Física dos plasmas - Estuda a matéria a centenas de milhares de graus ou mesmo a milhões de graus de temperatura, estado em que a estrutura atômica regular é desfeita em íons e elétrons ou em que ocorrem fusões nucleares, como no Sol e nas demais estrelas.
Física das partículas elementares - Trata dos constituintes fundamentais da matéria.
Física das radiações - Estuda os efeitos produzidos pela absorção da energia da radiação eletromagnética em geral ou da radiação ionizante em particular.
Gravitação e relatividade geral - Tratam das propriedades geométricas do espaço/tempo, como decorrentes das concentrações de massa no Universo.
Mecânica dos fluídos - Estuda as propriedades gerais e as leis de movimento dos gases e dos líquidos.
Óptica - Estuda propriedades e efeitos de fontes de luz (como os raios laser), de transmissores de luz (como as fibras ópticas) e de fenômenos e instrumentos ópticos (como o arco-íris e os microscópios).

quinta-feira, junho 03, 2010

ERA QUÂNTICA





A grande revolução que leva a Física à modernidade e a teoria quântica, que começa a se definir no fim do século XIX . É a inauguração de uma nova "lógica" resultante das várias pesquisas sobre a estrutura do átomo, radiatividade e ondulatória.

Max Planck é quem define o conceito fundamental da nova teoria - o quanta. Mas a teoria geral é de autoria de um grupo internacional de físicos, entre os quais: Niels Bohr (Dinamarca), Louis De Broglie (França), Erwin, Shrödinger e Wolfgang , Pauli (Áustria), Werner Heisenberg (Alemanha), e Paul Dirac (Inglaterra).



Quanta - Em 1900 o físico alemão Max Planck afirma que as trocas de energia não acontecem de forma continua e sim em doses, ou pacotes de energia, que ele chama de quanta. A introdução do conceito de descontinuidade subverte o princípio do filósofo alemão Wilhelm Leibniz (1646-1716), "natura non facit saltus"( a natureza não dá saltos), que dominava todos os ramos da ciência na época.



Max Planck - (1858-1947) nasce em Kiel, Alemanha. Filho de juristas, chega a oscilar entre a carreira musical e os estudos científicos. Decide-se pela Física e se dedica à carreira acadêmica até o fim da vida. Em 14 de dezembro de 1900, durante uma reunião da Sociedade Alemã de Física, apresenta a noção de "quanta elementar de ação". Em sua autobiografia Planck diz que na época não previa os efeitos revolucionários dos quanta. Em 1918 recebe o prêmio Nobel de Física.



Modelo quântico do átomo - Surge em 1913, elaborado por Niels Bohr (1885-1962). Segundo ele, os elétrons estão distribuídos em níveis de energia característicos de cada átomo. Ao absorver um quanta de energia, um elétron pode pular para outro nível e depois voltar a seu nível original, emitindo um quanta idêntico.



Dualidade Quântica

A grande marca da mecânica quântica é a introdução do conceito de dualidade e depois, com Werner Heisenberg, do princípio de incerteza. Para a mecânica quântica, o universo é essencialmente não-deterministico. O que a teoria oferece é um conjunto de prováveis respostas. No lugar do modelo planetário de átomo, com elétrons orbitando em volta de um núcleo, a quântica propõe um gráfico que indica zonas onde eles têm maior ou menor probabilidade de existir. Toda matéria passa a ser entendida segundo uma ótica dual: pode se comportar como onda ou como partícula. É o rompimento definitivo com a mecânica clássica, que previa um universo determinístico.



Princípio da incerteza - Em 1927 Werner Heisenberg formula um método para interpretar a dualidade da quântica, o princípio da incerteza. Segundo ele, pares de variáveis interdependentes como tempo e energia, velocidade e posição, não podem ser medidos com precisão absoluta. Quanto mais precisa for a medida de uma variável, mais imprecisa será a segunda. "Deus não joga dados", dizia Albert Einstein, negando os princípios na nova mecânica.

Estrutura do Átomo

Dalton


Em 1803 , John Dalton começa a apresentar sua teoria de que a cada elemento químico corresponde um tipo de átomo . Mas é só em 1897, com a descoberta do elétron, que o átomo deixa de ser uma unidade indivisível como se acreditava desde a Antiguidade.

Descoberta do elétron





- Em 1897 Joseph John Thomson, ao estudar os raios X e raios catódicos, identifica partículas de massa muito pequena, cerca de 1.800 vezes menores que a do átomo mais leve. Conclui que o átomo não é indivisível mas composto por partículas menores.

Modelo pudim




- Thomson diz que os átomos são formados por uma nuvem de eletricidade positiva na qual flutuam, como ameixas em volta de um pudim, partículas de carga negativa - os elétrons.

Modelo planetário - Em 1911 Ernest Rutherford bombardeia uma lâmina de ouro com partículas em alta velocidade. Observa que algumas partículas atravessam o anteparo e outras ricocheteiam. Descobre que existem espaços vazios no átomo, por isso algumas partículas passaram pela lâmina. Verifica também que há algo consistente contra o que outras partículas se chocaram e refletiram. Conclui que o átomo possui um núcleo (de carga positiva) em volta do qual orbitam elétrons, como planetas girando em torno do Sol. O modelo planetário é aperfeiçoado por Niels Bohr com fundamentos da Física quântica.

Prótons - 1919 Rutherford desintegra o núcleo de nitrogênio e detecta partículas nucleares de carga positiva. Elas seriam chamadas de prótons. Segundo Rutherford, o núcleo é responsável pela maior massa do átomo. Anuncia a hipótese de existência do nêutron, confirmada apenas 13 anos depois.

Nêutrons - 1932 James Chadwick membro da equipe, de Rutherford, descobre os nêutrons, partículas nucleares com a mesma massa do próton mas com carga elétrica neutra.





Ernest Rutherford - (1871 - 1937) nasce em Nelson, na Nova Zelândia, onde começa a estudar Física. Suas maiores contribuições foram as pesquisas sobre radiatividade e teoria nuclear. Em 1908 cria um método para calcular a energia liberada nas transformações radiativas e recebe o prêmio Nobel de química. Em 1919 realiza a primeira transmutação induzida e transforma um núcleo de nitrogênio em oxigênio através do bombardeamento com partículas alfa. A partir daí dedica-se a realizar transmutações de vários tipos de elementos. Em 1931 torna-se o primeiro barão Rutherford de Nelson

Estrutura do Átomo







Em 1803 , John Dalton começa a apresentar sua teoria de que a cada elemento químico corresponde um tipo de átomo . Mas é só em 1897, com a descoberta do elétron, que o átomo deixa de ser uma unidade indivisível como se acreditava desde a Antiguidade.




Descoberta do elétron - Em 1897 Joseph John Thomson, ao estudar os raios X e raios catódicos, identifica partículas de massa muito pequena, cerca de 1.800 vezes menores que a do átomo mais leve. Conclui que o átomo não é indivisível mas composto por partículas menores.

Modelo pudim - Thomson diz que os átomos são formados por uma nuvem de eletricidade positiva na qual flutuam, como ameixas em volta de um pudim, partículas de carga negativa - os elétrons.

Modelo planetário - Em 1911 Ernest Rutherford bombardeia uma lâmina de ouro com partículas em alta velocidade. Observa que algumas partículas atravessam o anteparo e outras ricocheteiam. Descobre que existem espaços vazios no átomo, por isso algumas partículas passaram pela lâmina. Verifica também que há algo consistente contra o que outras partículas se chocaram e refletiram. Conclui que o átomo possui um núcleo (de carga positiva) em volta do qual orbitam elétrons, como planetas girando em torno do Sol. O modelo planetário é aperfeiçoado por Niels Bohr com fundamentos da Física quântica.

Prótons - 1919 Rutherford desintegra o núcleo de nitrogênio e detecta partículas nucleares de carga positiva. Elas seriam chamadas de prótons. Segundo Rutherford, o núcleo é responsável pela maior massa do átomo. Anuncia a hipótese de existência do nêutron, confirmada apenas 13 anos depois.

Nêutrons - 1932 James Chadwick membro da equipe, de Rutherford, descobre os nêutrons, partículas nucleares com a mesma massa do próton mas com carga elétrica neutra.

Ernest Rutherford - (1871 - 1937) nasce em Nelson, na Nova Zelândia, onde começa a estudar Física. Suas maiores contribuições foram as pesquisas sobre radiatividade e teoria nuclear. Em 1908 cria um método para calcular a energia liberada nas transformações radiativas e recebe o prêmio Nobel de química. Em 1919 realiza a primeira transmutação induzida e transforma um núcleo de nitrogênio em oxigênio através do bombardeamento com partículas alfa. A partir daí dedica-se a realizar transmutações de vários tipos de elementos. Em 1931 torna-se o primeiro barão Rutherford de Nelson

Física APLICADA

No século XVIII, embora haja universidades e academias nos grandes centros, mais uma vez é por motivos práticos que a Física se desenvolve. A revolução industrial marca nova fase da Física. As áreas de estudos se especializam e a ligação com o modo de produção torna-se cada vez mais estreita.

Termodinâmica



Estuda as relações entre calor e trabalho. Baseia-se em dois princípios: o da conservação de energia e o de entropia. Estes princípios são a base de máquinas a vapor, turbinas, motores de combustão interna, motores a jato e máquinas frigoríficas.
A partir de uma máquina concebida para retirar a água que inundava as minas de carvão, o inglês Thomas Newcomen cria em 1698 a máquina a vapor, mais tarde aperfeiçoada pelo escocês James Watt. É em torno do desempenho dessas máquinas que o engenheiro francês Sadi Carnot estabelece uma das mais importantes sistematizações da termodinâmica, delimitando a transformação de energia térmica (calor) em energia mecânica (trabalho).

Primeiro princípio - É o da conservação da energia. Diz que a soma das trocas de energia em um sistema isolado é nula. Se, por exemplo, uma bateria é usada para aquecer água, a energia da bateria é convertida em calor mas a energia total do sistema, antes e depois de o processo começar, é a mesma.

Segundo princípio - Em qualquer transformação que se produza em um sistema isolado, a entropia do sistema aumenta ou permanece constante. Não há portanto qualquer sistema térmico perfeito no qual todo o calor é transformado em trabalho. Existe sempre uma determinada perda de energia.

Entropia - tendência natural da energia se dispersar e da ordem evoluir invariavelmente para a desordem. O conceito foi sistematizado pelo austríaco Ludwig Boltzmann ( 1844-1906) e explica o desequilíbrio natural entre trabalho e calor.

Zero absoluto - 0 Kelvin (equivalente a -273,15º C ou -459,6º F) ou "zero absoluto" não existe em estado natural. A esta temperatura a atividade molecular (atômica) é nula.







Lord Kelvin - (1824- 1907) é como ficou conhecido o físico irlandês William Thomson, barão Kelvin of Largs. Filho de matemático, forma-se em Cambridge e depois se dedica à ciência experimental. Em 1832 descobre que a descompressão dos gases provoca esfriamento e cria uma escala de temperaturas absolutas.

ELETROMAGNETISMO





Em 1820, o dinamarquês Hans Oersted relaciona fenômenos elétricos aos magnéticos ao observar como a corrente elétrica alterava o movimento da agulha de uma bússola. Michel Faraday inverte a experiência de Oersted e verifica que os magnetos exercem ação mecânica sobre os condutores percoridos pela corrente elétrica e descobre a indução eletromagnética, que terá grande aplicação nas novas redes de distribuição de energia.

Indução eletromagnética - Um campo magnético (variável) gerado por uma corrente elétrica (também variável) pode induzir uma corrente elétrica em um circuito. A energia elétrica também pode ser obtida a partir de uma ação mecânica: girando em torno de um eixo, um enrolamento de fio colocado entre dois imãs provoca uma diferença de potencial (princípio do dínamo).

Michael Faraday





- (1791-1867) é um caso raro entre os grandes nomes da ciência. Nasce em Newington, Inglaterra. Começa a trabalhar aos 14 anos como aprendiz de encadernador. Aproxima-se das ciências como autodidata e depois torna-se assistente do químico Humphy Davy. Apesar de poucos conhecimentos teóricos, o espírito de experimentação de Faraday o leva a importantes descobertas para a química e Física. Consegue liquefazer praticamente todos os gases conhecidos. Isola o benzeno. Elabora a teoria da eletrólise, a indução eletromagnética e esclarece a noção de energia eletrostática.

Raios catódicos - São feixes de partículas produzidos por um eletrodo negativo (cátodo) de um tubo contendo gás comprimido. São resultado da ionização do gás e provocam luminosidade. Os raios catódicos são identificados no final do século passado por Willian Crookes. O tubo de raios catódicos é usado em osciloscópios e televisões.

Raios X






- Em 1895 Wilhelm Konrad von Röntgen descobre acidentalmente os raios X quando estudava válvulas de raios catódicos. Verificou que algo acontecia fora da válvula e fazia brilhar no escuro focos fluorescentes. Eram raios capazes de impressionar chapas fotográficas através de papel preto. Produziam fotografias que revelavam moedas nos bolsos e os ossos das mãos. Estes raios desconhecidos são chamadas simplesmente de "x" .

Wilhelm Konrad von Röntgen - (1845-1923) nasce em Lennep, Alemanha, e estuda Física na Holanda e na Suíça . Realiza estudos sobre elasticidade, capilaridade, calores específicos de gases, condução de calor em cristais e absorção do calor por diferentes gases. Pela descoberta dos raios X recebe em 1901 o primeiro prêmio Nobel de Física da História.

Radiatividade




- É a desintegração espontânea do núcleo atômico de alguns elementos (urânio, polônio e rádio), resultando em emissão de radiação. Descoberta pelo francês Henri Becquerel ( 1852 - 1909) poucos meses depois da descoberta dos raios X. Becquerel verifica que, além de luminosidade, as radiações emitidas pelo urânio são capazes de penetrar a matéria.




Dois anos depois, Pierre Curie e sua mulher, a polonesa Marie Curie, encontram fontes radiativas muito mais fortes que o urânio. Isolam o rádio e o polônio e verificam que o rádio era tão potente que podia provocar ferimentos sérios e até fatais nas pessoas que dele se aproximavam.

Tipos de radiação - Existem três tipos de radiação; alfa, beta e gama. Á radiação alfa é uma partícula formada por um átomo de hélio com carga positiva. Radiação beta é também uma partícula, de carga negativa, o elétron. A radiação gama é uma onda eletromagnética. As substâncias radiativas emitem continuamente calor e têm a capacidade de ionizar o ar e torná-lo condutor de corrente elétrica. São penetrantes e ao atravessarem uma substância chocam-se com suas moléculas
.

Física APLICADA




No século XVIII, embora haja universidades e academias nos grandes centros, mais uma vez é por motivos práticos que a Física se desenvolve. A revolução industrial marca nova fase da Física. As áreas de estudos se especializam e a ligação com o modo de produção torna-se cada vez mais estreita.

Termodinâmica





Estuda as relações entre calor e trabalho. Baseia-se em dois princípios: o da conservação de energia e o de entropia. Estes princípios são a base de máquinas a vapor, turbinas, motores de combustão interna, motores a jato e máquinas frigoríficas.
A partir de uma máquina concebida para retirar a água que inundava as minas de carvão, o inglês Thomas Newcomen cria em 1698 a máquina a vapor, mais tarde aperfeiçoada pelo escocês James Watt. É em torno do desempenho dessas máquinas que o engenheiro francês Sadi Carnot estabelece uma das mais importantes sistematizações da termodinâmica, delimitando a transformação de energia térmica (calor) em energia mecânica (trabalho).

Primeiro princípio - É o da conservação da energia. Diz que a soma das trocas de energia em um sistema isolado é nula. Se, por exemplo, uma bateria é usada para aquecer água, a energia da bateria é convertida em calor mas a energia total do sistema, antes e depois de o processo começar, é a mesma.

Segundo princípio - Em qualquer transformação que se produza em um sistema isolado, a entropia do sistema aumenta ou permanece constante. Não há portanto qualquer sistema térmico perfeito no qual todo o calor é transformado em trabalho. Existe sempre uma determinada perda de energia.

Entropia - tendência natural da energia se dispersar e da ordem evoluir invariavelmente para a desordem. O conceito foi sistematizado pelo austríaco Ludwig Boltzmann ( 1844-1906) e explica o desequilíbrio natural entre trabalho e calor.

Zero absoluto - 0 Kelvin (equivalente a -273,15º C ou -459,6º F) ou "zero absoluto" não existe em estado natural. A esta temperatura a atividade molecular (atômica) é nula.





Lord Kelvin - (1824- 1907) é como ficou conhecido o físico irlandês William Thomson, barão Kelvin of Largs. Filho de matemático, forma-se em Cambridge e depois se dedica à ciência experimental. Em 1832 descobre que a descompressão dos gases provoca esfriamento e cria uma escala de temperaturas absolutas.

ELETROMAGNETISMO




Em 1820, o dinamarquês Hans Oersted relaciona fenômenos elétricos aos magnéticos ao observar como a corrente elétrica alterava o movimento da agulha de uma bússola. Michel Faraday inverte a experiência de Oersted e verifica que os magnetos exercem ação mecânica sobre os condutores percoridos pela corrente elétrica e descobre a indução eletromagnética, que terá grande aplicação nas novas redes de distribuição de energia.

Indução eletromagnética



- Um campo magnético (variável) gerado por uma corrente elétrica (também variável) pode induzir uma corrente elétrica em um circuito. A energia elétrica também pode ser obtida a partir de uma ação mecânica: girando em torno de um eixo, um enrolamento de fio colocado entre dois imãs provoca uma diferença de potencial (princípio do dínamo).

Michael Faraday




- (1791-1867) é um caso raro entre os grandes nomes da ciência. Nasce em Newington, Inglaterra. Começa a trabalhar aos 14 anos como aprendiz de encadernador. Aproxima-se das ciências como autodidata e depois torna-se assistente do químico Humphy Davy. Apesar de poucos conhecimentos teóricos, o espírito de experimentação de Faraday o leva a importantes descobertas para a química e Física. Consegue liquefazer praticamente todos os gases conhecidos. Isola o benzeno. Elabora a teoria da eletrólise, a indução eletromagnética e esclarece a noção de energia eletrostática.

Raios catódicos


- São feixes de partículas produzidos por um eletrodo negativo (cátodo) de um tubo contendo gás comprimido. São resultado da ionização do gás e provocam luminosidade. Os raios catódicos são identificados no final do século passado por Willian Crookes. O tubo de raios catódicos é usado em osciloscópios e televisões.

Raios X - Em 1895 Wilhelm Konrad von Röntgen descobre acidentalmente os raios X quando estudava válvulas de raios catódicos. Verificou que algo acontecia fora da válvula e fazia brilhar no escuro focos fluorescentes. Eram raios capazes de impressionar chapas fotográficas através de papel preto. Produziam fotografias que revelavam moedas nos bolsos e os ossos das mãos. Estes raios desconhecidos são chamadas simplesmente de "x" .

Wilhelm Konrad von Röntgen - (1845-1923) nasce em Lennep, Alemanha, e estuda Física na Holanda e na Suíça . Realiza estudos sobre elasticidade, capilaridade, calores específicos de gases, condução de calor em cristais e absorção do calor por diferentes gases. Pela descoberta dos raios X recebe em 1901 o primeiro prêmio Nobel de Física da História.

Radiatividade - É a desintegração espontânea do núcleo atômico de alguns elementos (urânio, polônio e rádio), resultando em emissão de radiação. Descoberta pelo francês Henri Becquerel ( 1852 - 1909) poucos meses depois da descoberta dos raios X. Becquerel verifica que, além de luminosidade, as radiações emitidas pelo urânio são capazes de penetrar a matéria.
Dois anos depois, Pierre Curie e sua mulher, a polonesa Marie Curie, encontram fontes radiativas muito mais fortes que o urânio. Isolam o rádio e o polônio e verificam que o rádio era tão potente que podia provocar ferimentos sérios e até fatais nas pessoas que dele se aproximavam.

Tipos de radiação - Existem três tipos de radiação; alfa, beta e gama. Á radiação alfa é uma partícula formada por um átomo de hélio com carga positiva. Radiação beta é também uma partícula, de carga negativa, o elétron. A radiação gama é uma onda eletromagnética. As substâncias radiativas emitem continuamente calor e têm a capacidade de ionizar o ar e torná-lo condutor de corrente elétrica. São penetrantes e ao atravessarem uma substância chocam-se com suas moléculas.

Física Clássica


Século XVII lança as bases para a Física da era industrial. Simon Stevin desenvolve a hidrostática, ciência fundamental para seus país, a Holanda, protegida do mar por comportas e diques. Na óptica, contribuição equivalente é dada por Christiaan Huygens, também holandês, que constrói lunetas e desenvolve teorias sobre a propagação da luz. Huygens é o primeiro a descrever a luz como onda. Mas é Isaac Newton ( 1642-1727), cientista inglês, o grande nome dessa época: são dele a teoria geral da mecânica e da gravitação universal e o cálculo infinitesimal.



Isaac Newton



- (1642- 1727) nasce em Woolsthorpe, Inglaterra, no mesmo ano da morte de Galileu. (começa a estudar na Universidade de Cambridge com 18 anos e aos 26 já se torna catedrático. Em 1687 publica Princípios matemáticos da filosofia natural. Dois anos depois é eleito membro do Parlamento como representante da Universidade de Cambridge. Já em sua época é reconhecido como grande cientista que revoluciona a Física e a matemática. Preside a Royal Society ( academia de ciência) por 24 anos. Nos últimos anos de vida dedica-se exclusivamente a estudos teológicos.



Cálculo diferencial - por volta de 1664, quando a universidade é fechada por causa da peste bubônica, Newton volta à sua cidade natal. Em casa, desenvolve o teorema do binômio e o método matemático das fluxões. Newton considera cada grandeza finita resultado de um fluxo contínuo, o que torna possível calcular áreas limitadas por curvas e o volume de figuras sólidas. Este método dá origem ao cálculo diferencial e integral .



Decomposição da luz





- Newton pesquisa também a natureza da luz. Demonstra que, ao passar por um prisma, a luz branca se decompõe nas cores básicas do espectro luminoso: vermelho, laranja, amarelo, verde, azul e violeta.



Leis da mecânica - A mecânica clássica se baseia em três leis.

Primeira lei - É a da inércia. Diz que um objeto parado e um objeto em movimento tendem a se manter como estão a não ser que uma força externa atue sobre eles.
Segunda lei - Diz que a força é proporcional à massa do objeto e sua aceleração. A mesma força irá mover um objeto com massa duas vezes maior com metade da aceleração.
Terceira lei - Diz que para toda ação há uma reação equivalente e contrária. Este é o princípio da propulsão de foguetes: quando os gases "queimados"(resultantes da combustão do motor) escapam pela parte final do foguete, fazem pressão em direção oposta, impulsionando-o para a frente.


Gravitação universal





- observando uma maçã que cai de uma árvore do jardim de sua casa, ocorre a Newton a idéia de explicar o movimento dos planetas como uma queda. A força de atração exercida pelo solo sobre a maçã poderia ser a mesma que faz a Lua "cair" continuamente sobre a Terra.



Principia - Durante os 20 anos seguintes , Newton desenvolve os cálculos que demonstram a hipótese da gravitação universal e detalha estudos sobre a luz, a mecânica e o teorema do binômio. Em 1687 publica Princípios matemáticos da filosofia natural, conhecida como Principia, obra-prima científica que consolida com grande precisão matemática suas principais descobertas. Newton prova que a Física pode explicar tanto fenômenos terrestres quanto celestes e por isso é universal.

Terceira Lei de Newton





Peso e a terceira lei de newton

Peso de um corpo

Vimos que um corpo abandonado próximo a surperfície da terra , cai com movimento acelerado . Portanto , concluímos que a terra atrai o corpo , isto é a terra exerce sobre o corpo uma forma que é denominada pelo corpo representada por
P.
Abandonando -se um corpo de massa M acima da surperfície
terrestre, numa região resultante sobre o corpo e o próprio peso .
Assim , de acordo com a 2° lei de Newton temos a correspondência :

F=m.a P=N( newton ) P=m.g . Onde g é a aceleração da gravidade .

Exemplo = consideramos um corpo de massa
M=10kg

A) calcule o peso desse corpo da terra , onde a aceleração da gravidade tem modulo
g=9,8 m/s2

P= m.g
P=10.(9.8)
P= 98 N


quarta-feira, junho 02, 2010

Terceira Lei de Newton






Introdução

Isaac Newton nascido em Woolsthorpe, a 4 de janeiro de 1643, foi físico e matemático, que descreveu as leis que explicam vários comportamentos relativos aos movimentos dos corpos. Newton é o autor de Philosophiae Naturalis Principia Mathematica, obra na qual ele descreve a Lei da Gravitação Universal e as leis dos movimentos – Leis de Newton.

São três as leis que Newton descreveu, são elas:

Primeira Lei de Newton, também chamada de Princípio da Inércia;
Segunda Lei de Newton, também chamada de Princípio Fundamental da Dinâmica;
Terceira Lei de Newton, também chamada de Princípio da Ação e Reação.

Terceira Lei de Newton

Também denominada de princípio da ação e reação, ela pode ser enunciada da seguinte forma:

Se um corpo A aplicar uma força sobre um corpo B, receberá deste uma força de mesma intensidade, mesma direção e de sentido contrário.
=
As forças de ação e reação possuem as seguintes características:
• Possuem a mesma natureza, ou seja, são ambas de contato ou de campo;
• São forças trocadas entre dois corpos;
• Não se equilibram e não se anulam, pois estão aplicadas em corpos diferentes.
A terceira lei é muito comum no cotidiano. O ato de caminhar e o lançamento de um foguete são exemplos da aplicação dessa lei. Ao caminharmos somos direcionados para frente graças à força que nossos pés aplicam sobre o chão.

Segunda lei de Newton





Também chamada de Princípio Fundamental da Dinâmica, esta lei, a segunda de três, foi estabelecida por Sir Isaac Newton ao estudar a causa dos movimentos. Este princípio consiste na afirmação de que um corpo em repouso necessita da aplicação de uma força para que possa se movimentar, e para que um corpo em movimento pare é necessária a aplicação de uma força. Um corpo adquire velocidade e sentido de acordo com a intensidade da aplicação da força. Ou seja, quanto maior for a força maior será a aceleração adquirida pelo corpo.

*Aceleração: é a taxa de variação da velocidade. No SI sua unidade é o metro por segundo ao quadrado (m/s2).

Newton estabeleceu esta lei para análise das causas dos movimentos, relacionando as forças que atuam sobre um corpo de massa m constante e a aceleração adquirida pelo mesmo devido à atuação das forças. Esta lei diz que:

A resultante das forças aplicadas sobre um ponto material é igual ao produto da sua massa pela aceleração adquirida:

Esta é uma igualdade vetorial onde a força e a aceleração são grandezas vetoriais, as quais possuem módulo, direção e sentido. Esta equação significa que a força resultante (soma das forças que atuam sobre um determinado ponto material) produz uma aceleração com mesma direção e sentido da força resultante e suas intensidades são proporcionais.

*Ponto material: em mecânica este é um termo utilizado para representar qualquer objeto em virtude do fenômeno, sem levar em consideração suas dimensões. Ou seja, as dimensões não afetam no resultado do fenômeno estudado.

No Sistema Internacional de Unidades (SI) a unidade de força é o newton (N) em homenagem a Newton. Porém, existem outras unidades de medida como o dina e o kgf.

Peso

Peso é a força gravitacional sofrida por um corpo nas vizinhanças de um planeta. É uma grandeza vetorial e, portanto, possui módulo, direção e sentido. Matematicamente temos:
P =m.g
Onde g é a aceleração da gravidade local.

A massa de um corpo não muda. O que muda é seu peso devido à ação da força gravitacional, que pode ser maior ou menor, dependendo da localização do corpo.

Primeira lei de Newton



Introdução

Ao empurrar uma caixa sobre uma mesa é notório que ela só se movimenta enquanto estiver exercendo sobre ela uma força. Se a força cessar, ou seja, se parar de empurrá-la, ela logo pára. Tal observação levou o filósofo grego Aristóteles a estabelecer a seguinte conclusão:

“Um corpo só permanece em movimento se estiver atuando sobre ele uma força”.

Esta interpretação, formulada no século IV a.C., de Aristóteles foi aceita até o Renascimento (séc. XVII).

Galileu Galilei dizia que o estudo sobre os movimentos requeria experiências mais cuidadosas. Após a realização de vários experimentos Galileu percebeu que sobre um livro que é empurrado, por exemplo, existe a atuação de uma força denominada de Força de Atrito, e que tal força é sempre contrária à tendência do movimento dos corpos. Assim, ele percebeu que se não houvesse a presença do atrito o livro não pararia se cessasse a aplicação da força sobre ele, ao contrário do que pensava Aristóteles. As conclusões de Galileu podem ser sintetizadas da seguinte maneira:

Se um corpo estiver em repouso, é necessária a aplicação de uma força para que ele possa alterar o seu estado de repouso. Uma vez iniciado o movimento e depois de cessado a aplicação da força, e livre da ação da força de atrito, o corpo permanecerá em movimento retilíneo uniforme (MRU) indefinidamente.

Os experimentos de Galileu levaram à conclusão da seguinte propriedade física da matéria: inércia. Segundo essa propriedade, se um corpo está em repouso, ou seja, se a resultante das forças que atuam sobre ele for nula, ele tende a ficar em repouso. E se ele está em movimento ele tende a permanecer em movimento retilíneo uniforme.

Anos mais tarde, após Galileu ter estabelecido o conceito de inércia, Sir Isaac Newton formulou as leis da dinâmica denominadas de “as três leis de Newton”. Newton concordou com as conclusões de Galileu e utilizou-as em suas leis.

Primeira Lei de Newton

Também chamada de Lei da Inércia, apresenta o seguinte enunciado:

Na ausência de forças, um corpo em repouso continua em repouso, e um corpo em movimento, continua em movimento retilíneo uniforme (MRU).

Movimento Retilíneo Uniforme é o movimento no qual a velocidade permanece constante durante todo o percurso de um corpo. A velocidade é constante e diferente de zero (V≠0) e a aceleração é nula (a = 0).

Assim, tanto Galileu quanto Newton perceberam que um corpo pode se movimentar sem que nenhuma força esteja atuando sobre ele.

Como funciona a gravidade








Existem duas forças da natureza que estão presentes nas nossas vidas: a gravidade e o magnetismo. Você deve ter ímãs em sua geladeira e sabe que um íma atrai o metal da geladeira com uma certa quantidade de força. Esta força de atração depende da intensidade do ímã e da distância entre o ímã e o metal. Você também deve saber que os ímãs têm dois pólos, norte e sul. Ambos os pólos atraem aço ou ferro, igualmente bem, o norte atrai o sul e pólos semelhantes se repelem.
Com relação à gravidade, Newton foi a primeira pessoa a estudá-la com seriedade e, assim, desenvolveu a lei da gravitação universal.
"Cada partícula de matéria atrai a outra partícula com uma força, que é diretamente proporcional ao produto das suas massas e, inversamente proporcional ao quadrado da distância entre elas".
A fórmula padrão da gravidade é:

Força gravitacional = (G * m1 * m2) / (d2)
Onde G é a constante de gravitação, m1 e m2 são as massas dos dois objetos para os quais você calcula a força e d é a distância entre os centros de gravidade das duas massas.
O valor de G é 6,67 x 10-8 dinas * cm2/gm2 (ou 6,67 x 10-11 m3/kg*s2 no Sistema Internacional de Unidades). Isso significa que se você colocar dois objetos de 1 grama a 1 centímetro de distância, eles vão se atrair com uma força de 6,67 x 10-8 dinas. Um dina é igual a cerca de 0,001 grama-força. Isso significa que se você tem 1 dina de força disponível, ela pode levantar 0,001 grama no campo gravitacional da Terra. Então, 6,67 x 10-8 dinas é uma força minúscula. Mas, quando você está lidando com corpos gigantesco como a Terra, que tem uma massa de 6 x 10 +24 quilogramas, a força também se torna muito poderosa. Também é interessante saber que cada átomo atrai todos os outros átomos do universo de forma tênue.
Einstein veio depois e redefiniu a gravidade. Então, existem dois modelos: o de Newton e o de Einstein. A teoria gravitacional de Einstein tem características que permitem prever o movimento da luz em torno de objetos de massa muito grande, além de prever outros fenômenos interessantes. De acordo com a Enciclopédia Britânica (em inglês):
"A teoria geral da relatividade aponta o problema da gravidade e do movimento não-uniforme (ou acelerado). Em um dos seus experimentos, Einstein mostrou que não é possível distinguir um referencial inercial em um campo gravitacional de um referencial acelerado. Isto quer dizer que um observador, dentro de uma cápsula espacial fechada, que empurra o seu próprio corpo em direção ao assento, não saberia dizer se ele e a cápsula estavam em repouso em relação ao campo gravitacional ou se ele e a cápsula estavam em um movimento acelerado. De acordo com este princípio de equivalência, Einstein mudou para uma interpretação geométrica da gravitação. A presença de massa ou energia concentrada gera uma curvatura local no continuo do espaço-tempo. A curvatura é tão acentuada que as trajetórias inerciais dos corpos não são mais linhas retas, e sim, um tipo de trajetória curva (orbital). Esta aceleração é chamada de gravitação".

Física na antiguidade





Física na Antigüidade


É na Grécia Antiga que são feitos os primeiros estudos "científicos" sobre os fenômenos da natureza. Surgem os "filósofos naturais" interessados em racionalizar o mundo sem recorrer à intervenção divina.

Atomistas Gregos



A primeira teoria atômica começa na Grécia, no século V a.C. Leucipo, de Mileto, e seu aluno Demócrito, de Abdera (460 a.C. - 370 a.C.) , formulam as primeiras hipóteses sobre os componentes essenciais da matéria. Segundo eles, o Universo é formado de átomos e vácuo. Os átomos são infinitos e não podem ser cortados ou divididos. São sólidos mas de tamanho tão reduzido que não podem ser vistos. Estão sempre se movimentando no vácuo.

Física Aristotélica

É com Aristóteles que a Física e as demais ciências ganham o maior impulso na Antigüidade . Suas principais contribuições para a Física são as idéias sobre o movimento, queda de corpos pesados (chamados "graves", daí a origem da palavra "gravidade" ) e o geocentrismo . A lógica aristotélica irá dominar os estudos da Física até o final da Idade Média.

Aristóteles - (384 a.C. - 322 a.C. ) Nasce em Estagira, antiga Macedônia (hoje, Província da Grécia) . Aos 17 anos muda-se para Atenas e passa a estudar na Academia de Platão, onde fica por 20 anos . Em 343 a.C. torna-se tutor de Alexandre, o grande, na Macedônia. Quando Alexandre assume o trono, em 335 a.C. , volta a Atenas e começa a organizar sua própria escola, localizada em um bosque dedicado a Apolo Liceu - por isso, chamada de Liceu . Até hoje, se conhece apenas um trabalho original de Aristóteles (sobre a Constituição de Atenas) . Mas as obras divulgadas por meio de discípulos tratam de praticamente todas as áreas do conhecimento : lógica, ética, política, teologia, metaFísica, poética, retórica, Física, psicologia, antropologia, biologia. Seus estudos mais importantes foram reunidos no livro Órganom .


Geocentrismo









- Aristóteles descreve o cosmo como um enorme ( porém finito) círculo onde existem nove esferas concêntricas girando em torno da Terra, que se mantêm imóvel no centro delas.

Gravidade

-


Aristóteles considera que os corpos caem para chegar ao seu lugar natural. Na antiguidade, consideram-se elementos primários a terra, a água, ar e fogo. Quanto mais pesado um corpo (mais terra) mais rápido cai no chão. A água se espalha pelo chão porque seu lugar natural é a superfície da Terra. O lugar natural do ar é uma espécie de capa em torno da Terra. O fogo fica em uma esfera acima de nossas cabeças e por isso as chamas queimam para cima.

Primórdios da Hidrostática



A hidrostática, estudo do equilíbrio dos líquidos, é inaugurada por Arquimedes. Diz a lenda que Hierão, rei de Siracusa, desafia Arquimedes a encontrar uma maneira de verificar sem danificar o objeto, se era de ouro maciço uma coroa que havia encomendado. Arquimedes soluciona o problema durante o banho. Percebe que a quantidade de água deslocada quando entra na banheira é igual ao volume de seu corpo. Ao descobrir esta relação sai gritando pelas ruas "Eureka, eureka !" ( Achei, achei !) . No palácio, mede então a quantidade de água que transborda de um recipiente cheio quando nele mergulha sucessivamente o volume de um peso de ouro igual ao da coroa, o volume de um peso de prata igual ao da coroa e a própria coroa. Este, sendo intermediário aos outros dois, permite determinar a proporção de prata que fora misturada ao ouro.

Princípio de Arquimedes




- A partir dessas experiências Arquimedes formula o princípio que leva o seu nome: todo corpo mergulhado em um fluído recebe um impulso de baixo para cima ( empuxo ) igual ao peso do volume do fluído deslocado. Por isso os corpos mais densos do que a água afundam e os mais leves flutuam. Um navio, por exemplo, recebe um empuxo igual ao peso do volume de água que ele desloca. Se o empuxo é superior ao peso do navio ele flutua.

Arquimedes - ( 287 a.C. - 212 a.C.) - nasce em Siracusa, na Sicília . Freqüenta a Biblioteca de Alexandria e lá começa seus estudos de matemática. Torna-se conhecido pelos estudos de hidrostática e por suas invenções, como o parafuso sem ponta para elevar água. também ganha fama ao salvar Siracusa do ataque dos romanos com engenhosos artefatos bélicos. Constrói um espelho gigante que refletia os raios solares e queimava a distância os navios inimigos. É também atribuído a Arquimedes o princípio da alavanca . Com base neste princípio, foram construídas catapultas que também ajudaram a resistir aos romanos. Depois de mais de três anos, a cidade é invadida é Arquimedes e assassinado por um soldado romano.

Yin e Yang





Os chineses também iniciaram na Antiguidade estudos relacionados à Física. Não se ocupam de teorias atômicas ou estrutura da matéria. Procuram explicar o Universo como resultado do equilíbrio das forças opostas Yin e Yang . Estas palavras significam o lado sombreado e ensolarado de uma montanha e simbolizam forças opostas que se manifestam em todos os fenômenos naturais e aspectos da vida. Quando Yin diminui, Yang aumenta e vice-versa .
A noção de simetria dinâmica de opostos inaugurada pela noção de Yin e Yang será retomada no inicio do século XX com a teoria quântica (ver Princípio da incerteza neste capítulo) .

REVOLUÇÃO COPERNICANA





Em 1510 Nicolau Copérnico rompe com mais de dez séculos de domínio do geocentrismo. No livro Commentariolus diz pela primeira vez que a Terra não é o centro do Universo e sim um entre outros tantos planetas que giram em torno do Sol. Enfrenta a oposição da Igreja Católica, que adotara o sistema aristotélico como dogma e faz da Física um campo de estudo específico.
Para muitos historiadores, a revolução copernicana se consolida apenas um século depois com as descobertas telescópicas e a mecânica de Galileu Galilei (1564-1642) e as leis de movimentos dos planetas dos planetas de Joannes Kepler ( 1571- 1630).

Heliocentrismo








- "O centro da Terra não é o centro do mundo ( Universo) e sim o Sol ". Este é o princípio do heliocentrismo (que tem o Sol do grego hélio - como centro), formulado por Nicolau Copérnico e marco da concepção moderna de Universo. Segundo o heliocentrismo, todos os planetas, entre eles a Terra, giram em torno do Sol descrevendo órbitas circulares.

Nicolau Copérnico - ( 1473 - 1543) nasce em Torum, na Polônia. Estuda matemática, os clássicos gregos, direito canônico ( em Bolonha, na Itália) e medicina (em Pádua, Itália) e só depois se dedica exclusivamente à área que realmente lhe interessava: a astronomia. Em 1513 constrói um observatório e começa a estudar o movimento dos corpos celestes. A partir dessas observações, escreve Das revoluções dos corpos celestes com os princípios do heliocentrismo. Copérnico revoluciona a idéia que o homem tinha de si mesmo (visto como imagem de Deus e por isso centro de tudo) e dá novo impulso a todas as ciências ao colocar a observação e a experiência acima da autoridade e dos dogmas.


terça-feira, junho 01, 2010

Arquimedes


Arquimedes ficou radiante, tanto, que saiu pelado, pelas ruas gritando "eureka, eureka".

Imagine a cena, um velho nú, correndo e gritando. Só pode ser coisa de grego. Enfim.

Arquimedes pediu ao rei a exata quantidade de ouro que ele havia dado ao ourives para confeccionar a coroa, e e colocou aquele tanto de ouro dentro de uma tina cheia de água. É claro, verteu para fora um tanto de água. Daí, Arquimedes pediu a própia coroa, e a colocou em outra tina, igual à primeira, cheia de água, e a tina extravazou, como no primeiro caso. Só que menos. Assim, comparando as águas que saíram das duas tinas, Arquimedes provou para o rei que a coroa tinha menos ouro que a quantidade que o rei tinha dado para o ourives, ou seja, que o ourives tinha lesado o rei, forjando uma liga qualquer para a coroa, roubando-lhe parte do ouro.

Do destino do ourives ladrão, ninguém sabe, ninguém lembra. Mas Arquimedes acabara de inventar a relação densidade = massa/volume.

segunda-feira, maio 31, 2010

Pipa X Benjamin






O cientista, também escritor e diplomata Benjamin Franklin (1706-1790) usou um fio de metal para empinar uma pipa de papel. Este fio estava preso a uma chave, também de metal, manipulada por um fio de seda. Franklin soltou o “brinquedo” junto com o filho e observou que a carga elétrica dos raios descia pelo dispositivo.






A perigosa experiência, realizada em 15 de junho de 1752, comprovou à comunidade científica da época que o raio é apenas uma corrente elétrica de grandes proporções. Como cientista voltado à praticidade e à utilidade de suas descobertas, Franklin demonstrou ainda que hastes de ferro ligadas à terra e posicionadas sobre ou ao lado de edificações serviriam de condutores de descargas elétricas atmosféricas. Estava inventado o para-raios.

Em uma carta enviada a um amigo em Londres, Franklin sugeriu a ampla instalação dessas estacas de proteção contra a ação dos raios. A idéia espalhou-se rapidamente e, apenas um ano depois, um padre construía o primeiro para-raios na Europa. Na Alemanha, a invenção chegaria alguns anos mais tarde, tendo sido o primeiro dispositivo instalado em Hamburgo no ano de 1769.

Um para-raios construído hoje é composto por hastes e cabos metálicos, colocados no ponto mais alto do local a ser protegido. Estes cabos, que ligam o topo de um prédio ao solo, recebem as descargas dos raios, direcionando-as para a terra. A outra extremidade do fio condutor é ligada a uma barra metálica enterrada no solo, que recebe a corrente elétrica.

Mais de dois séculos de polêmica

Desde a invenção do para-raios, não havia consenso entre os cientistas sobre a melhor forma de construir o dispositivo. Franklin sugeria um objeto pontiagudo, enquanto na Inglaterra foram confeccionados para-raios arredondados, por decreto do rei Jorge 3º. Segundo ordens da corte, um dispositivo pontiagudo iria atrair ainda mais os raios. Somente em junho de 2000 (!), ou seja, 248 anos após a invenção de Franklin, a polêmica foi encerrada.

Experiências precisas provaram que a forma arredondada é mais eficaz no transporte das correntes elétricas. Isso não implica, no entanto, qualquer espécie de elogio ao rei Jorge 3º. O monarca não dispunha nem de conhecimentos básicos sobre o tema e só defendeu a forma arredondada devido a desavenças políticas com o inventor norte-americano.

Desde 1747, Franklin ocupara-se de estudos sobre a teoria da eletricidade, tendo desenvolvido conceitos que, em seus parâmetros básicos, são válidos até hoje. Embora fosse conhecida anteriormente, a hipótese de que o raio é um fenômeno elétrico só veio a ser constatada por ele, o que muito contribuiu para sua reputação entre a comunidade científica européia da época.

Importante atuação política

Mas seria injusto limitar os feitos de Franklin ao campo científico. Sua atuação política foi essencial para os destinos das colônias norte-americanas. Foi ele quem fundou a primeira biblioteca pública da América, no ano de 1731. Seis anos mais tarde, seria designado deputado no estado da Filadélfia. Entre 1750 e 1764, foi deputado na Pensilvânia.

Entre outras atividades, defendeu várias vezes os interesses das colônias norte-americanas, como enviado oficial destas a Londres e Paris. Em 1790, na função de presidente da Sociedade para Abolição da Escravatura da Pensilvânia, Franklin pediu ao Congresso a libertação urgente dos escravos. Foi este seu último ato público.



Carsten Heinisch

A maçã que mudou o mundo !!






''Por que a maçã sempre cai perpendicularmente ao chão?, perguntou-se Newton. Por que ela não se move para os lados, ou para cima, mas sempre em direção ao centro da Terra? Certamente, porque a Terra a atrai. Tem de haver uma força de atração envolvida nisso."



Numa tarde de primavera em 1726, um ano antes de sua morte, o físico inglês Isaac Newton sentou-se no jardim para tomar chá com um amigo, o antiquário William Stukeley, que se tornaria seu biógrafo. Apontando para as macieiras em volta, o pai da ciência moderna relatou como tiveram início as investigações que o levaram a formular a lei da gravidade, a explicar o movimento dos planetas e, em última análise, a finalmente dar um sentido a tudo o que acontece no universo. Newton disse-lhe que tudo começou quando viu uma maçã cair da árvore, o que o levou a perguntar: por que a maçã não se move para os lados ou para cima? Só pode ser porque uma força a atrai para a Terra, ele concluiu. A descrição desse diálogo consta do manuscrito elaborado por Stukeley em 1752, Memoirs of Sir Isaac Newton’s Life (Memórias da Vida de Sir Isaac Newton), que desde a semana passada pode ser lido na internet.
O documento encontra-se guardado na Royal Society, a lendária associação de cientistas ingleses. Neste ano, ela completa 350 anos de existência, e, para celebrar a data, a entidade decidiu publicar em seu site vários documentos famosos. Além do manuscrito de Stukeley, podem ser lidos no site originais do filósofo inglês John Locke, entre outros documentos. Todos esses textos podem ser encontrados em edições impressas - mas a leitura do original, com a letra do autor, tem especial sabor. "O episódio de Newton com a maçã é um dos mais famosos da ciência, por isso resolvemos publicá-lo", disse a VEJA Keith Moore, diretor da biblioteca da Royal Society.
A leitura de William Stukeley serve para desmentir duas falácias comumente associadas ao episódio de New-ton com a maçã. O primeiro é que a maçã teria caído sobre sua cabeça. Essa informação sempre rendeu ilustrações e charges divertidas, mas não é verdadeira. A segunda é que, diante da maçã caindo da árvore, Newton teria tido um estalo genial e formulado a lei da gravitação universal. Ele ainda levaria vinte anos se debruçando sobre seus estudos até publicá-la em sua obra mais conhecida e mais notável, Princípios Matemáticos da Filosofia Natural, conhecida pela abreviatura Principia. A história da ciência é rica em episódios nebulosos, mais conhecidos por versões deturpadas ou cuja veracidade é duvidosa (veja o quadro).
Foi justamente por meio da Royal Society que Isaac Newton publicou a Principia. Na obra, ele disseca a primeira lei verdadeiramente universal da natureza produzida pela ciência. New-ton explica que existe uma força de atração entre todos os corpos do universo, relacionada à sua massa e à distância entre eles. Isso explica por que os planetas giram em torno do Sol e a Lua gira em torno da Terra. É também por isso que os homens e os animais não são lançados para o espaço, mesmo com a Terra girando a mais de 1 600 quilômetros por hora na região do Equador (essa velocidade diminui à medida que se aproximam os polos). A lei explica ainda os movimentos das marés, resultado da atração da massa lunar sobre as águas dos oceanos. Além disso, a Principia contém os fundamentos da mecânica clássica:
• Lei da inércia - Todo objeto tende a ficar parado ou em movimento uniforme, a não ser que uma força aja sobre ele.
• Princípio da dinâmica - A aceleração de um objeto é proporcional à força aplicada sobre ele.
• Princípio da ação e reação - A toda ação corresponde uma reação, de mesma intensidade, mas em sentido oposto.
A publicação da Principia rendeu a Newton fama imediata. Suas teorias forneciam explicações para um conjunto tão grande de fenômenos, tanto no mundo palpável do dia a dia quanto nas esferas celestes, que mudaram a compreensão que as pessoas tinham do mundo à sua volta. Embora festejado, Newton manteve o comportamento excêntrico que sempre o caracterizou. Solitário, com fama de teimoso e mal-humorado, colecionou uma série de extravagâncias. Era religioso, mas pertencia a uma seita herética chamada arianismo, que negava a Santíssima Trindade. Em 1936, o economista John Maynard Keynes arrebatou num leilão um maço de trabalhos de Newton e constatou, surpreso, que eles relatavam experiências no campo da alquimia - tentativas de transformar metais comuns em metais preciosos. Nenhuma dessas esquisitices apaga o brilho formidável do cientista que mudou a percepção da humanidade a respeito do mundo - a partir de uma simples maçã.

domingo, maio 30, 2010

Robert Hooke







Cientista inglês, essencialmente mecânico e meteorologista nascido em Freshwater, na Isle of Wight, que formulou a teoria do movimento planetário e a primeira teoria sobre as propriedades elásticas da matéria. Filho de um humilde pastor protestante, iniciou-se como corista da Igreja de Cristo de Oxford e foi estudar em Oxford University (1653), onde começou como assistente de laboratório de Robert Boyle (1655), e posteriormente seu colaborador nos estudos sobre gases, mostrando-se ser um exímio experimentador e ter forte inclinação para a mecânica. Pioneiro nas hipóteses de que as tensões tangenciais são proporcionais às velocidades de deformação angular e de que as componentes normais são funções lineares das velocidades de deformação, seu primeiro invento foi o relógio portátil de corda (1657) e enunciou a lei da elasticidade ou lei de Hooke (1660), segundo a qual as deformações sofridas pelos corpos são, em princípio, diretamente proporcionais às forças que se aplicam sobre eles.
Sua habilidade com experimentos valeu-lhe a eleição como membro e nomeação como curador de experiências da Royal Society (1662). Foi, também, professor de geometria do Greshan College. Descreveu a estrutura celular da cortiça (1665) e publicou Micrographia, sobre suas descobertas em ótica e iniciando suas análises dos efeitos do prisma, esferas e lâminas, com a utilização do microscópio. Com o microscópio também deu importante contribuição ao estudo da estrutura das células, devendo-se a ele a origem deste termo. Data deste mesmo ano outra sua invenção: o barômetro. Pesquisador em elasticidade dos fluidos e estudioso de gravitação universal, adaptou projetos de moinhos de vento para esquematizar medidores de correntes de ar e de água.
Suas notas e sua teoria sobre as rotações planetárias foram muito importantes para as pesquisas astronômicas posteriores. Utilizando um telescópio refletor, chegou a descobrir estrelas e a deduzir a rotação do planeta Júpiter em torno de seu eixo. Enunciou uma lei sobre a força da gravidade que, aperfeiçoada poucos anos depois por Isaac Newton, tornou-se um dos conceitos elementares da física. Também desenvolveu outros estudos sobre termodinâmica e óptica e entre suas criações ainda são citadas tipos de higrômetros e um anemômetro, uma junta universal e um aperfeiçoamento efetivo da bomba de vácuo. Foi o sucessor de Oldenburg como secretário da Royal Society (1677-1682) e faleceu em Londres, Inglaterra.

Alexandre volta





Alessandro Giuseppe Antonio Anastasio Volta (Como, 18 de Fevereiro de 1745 — Como, 5 de Março de 1827) foi um físico italiano, conhecido especialmente pela invenção da bateria. Mais tarde, viria a receber o título de conde.
Volta nasceu e foi educado em Como, Itália, onde ele se tornou professor de Física na Escola Real em 1774. Sua paixão foi sempre o estudo da eletricidade, e já como um jovem estudante ele escreveu um poema em latim na sua nova fascinante descoberta. De vi attractiva ignis electrici ac phaenomenis inde pendentibus foi seu primeiro livro científico. Apesar de sua genialidade desde jovem, começou a falar somente aos quatro anos de idade.
Em 1751, com seis anos de idade foi encaminhado, pela família para a escola jesuítica, pois era de interesse familiar que seguisse carreira eclesiástica, porém, em 1759, com quatorze anos decidiu estudar física, e dois anos depois abandonou a escola jesuítica e desistiu da carreira eclesiástica.
Em 1775, criou o eletróforo, uma máquina que produzia eletricidade estática, e fez experimentos como ignições de gases por uma faísca elétrica em um tanque fechado.
Em 1779, tornou-se professor de Física na Universidade de Pavia, posição que ocupou por 25 anos. Em 1794, Volta casou-se com Teresa Peregrini, filha de Count Ludovico Peregrini; o casal teve três filhos.
Em 1800, como resultado de uma discórdia profissional sobre a resposta galvânica, advocado por Luigi Galvani (onde metais produziriam eletricidade apenas em contato com tecido animal), Volta desenvolveu a pilha voltaica (comprovando que para a produção de eletricidade, a presença de tecido animal não era necessária), um predecessor da bateria elétrica. Volta determinou que os melhores pares de metais dissimilares para a produção de eletricidade eram zinco e prata.
Inicialmente, Volta experimentou células individuais em série, cada célula sendo um cálice de vinho cheio de salmoura na qual dois electrodos dissimilares foram mergulhados. A pilha elétrica substituiu o cálice com um cartão embebido em salmora. O número de células, e consequentemente, a tensão elétrica que poderiam produzir, estava limitado pela pressão exercida pelas células de cima, que espremiam toda a salmora do cartão da célula de baixo.
No período de 1800 a 1815, após a invenção da pilha, houve grande evolução da eletroquímica.
Em honra ao seu trabalho no campo de eletricidade, Napoleão nomeou Volta conde em 1810.
Em 1815, o imperador da Áustria nomeou Volta professor de Filosofia na Universidade de Pádua. Volta está enterrado na cidade de Como, Itália. O "Templo Voltiano" perto do Lago Como é um museu devotado ao trabalho do físico italiano: seus instrumentos e publicações originais estão à mostra lá.
Em 1881, uma importante unidade elétrica, o volt, foi nomeada em homenagem a Volta. Volta aparecia nas antigas notas de dez mil liras italianas, hoje já fora de circulação. Também em sua homenagem, uma cratera lunar recebeu este nome.